Aktivitäten pro Jahr
Projektdetails
Beschreibung
Modern machine learning methods, such as deep learning (DL), offer new possibilities for automating mapping tasks. DL works by recognising recurring patterns and textures through an artificial neural network. However, very limited work has been done on rock glacier mapping, and there is a lack of consensus regarding the best parameters for this purpose. Moreover, features that share similar surface textures with rock glaciers, such as landslides and avalanche or fluvial deposits, can be misclassified by DL. Therefore, there is a need to conduct a thorough investigation of the DL model architectures and input data types that produce the best results for mapping rock glaciers.
The overall goal of ROGER is to reliably map and characterise rock glaciers using optical and synthetic aperture radar (SAR) EO data. We will assess the performance, robustness, and reliability of DL models for automated EO-based rock glacier mapping in study areas in Austria and Svalbard, Norway, and quantify the accuracy of the results in comparison with reference data. Moreover, we will derive velocity rates of the identified rock glaciers using differential synthetic aperture radar interferometry (DInSAR) and classify them according to their activity status. ROGER represents an important contribution to the field of cryospheric research by evaluating methods for the automated identification and characterisation of rock glaciers and expand our knowledge of the potential of DL to efficiently map complex natural phenomena using EO data. The project findings will contribute to increasing the trustworthiness of DL methods, which is of high importance for many applications and especially when communicating and explaining results to stakeholders and decision makers.
Kurztitel | ROGER |
---|---|
Akronym | ROGER |
Status | Laufend |
Tatsächlicher Beginn/ -es Ende | 1/09/24 → 31/08/25 |
UN-Ziele für nachhaltige Entwicklung
2015 einigten sich UN-Mitgliedstaaten auf 17 globale Ziele für nachhaltige Entwicklung (Sustainable Development Goals, SDGs) zur Beendigung der Armut, zum Schutz des Planeten und zur Förderung des allgemeinen Wohlstands. Die Arbeit dieses Projekts leistet einen Beitrag zu folgendem(n) SDG(s):
Schlagwörter
- Rock glacier
- Sentinel-1/2
- Deep learning
- Automated mapping
- DInSAR
-
Disaster Research Days
Streifeneder, V. (Mitwirkende/r), Hölbling, D. W. (Mitwirkende/r) & Dabiri, Z. (Mitwirkende/r)
8 Okt. 2024 → 10 Okt. 2024Aktivität: Mitwirkung an und Organisation einer Veranstaltung › Mitwirkung an einer Veranstaltung
-
13th Advanced Training Course on Land Remote Sensing
Nafieva, E. (Mitwirkende/r)
17 Sept. 2024 → 20 Sept. 2024Aktivität: Mitwirkung an und Organisation einer Veranstaltung › Mitwirkung an einer Veranstaltung
-
13th ESA Land Remote Sensing Advanced Course 2024
Streifeneder, V. (Mitwirkende/r) & Nafieva, E. (Mitwirkende/r)
16 Sept. 2024 → 20 Sept. 2024Aktivität: Mitwirkung an und Organisation einer Veranstaltung › Mitwirkung an einer Veranstaltung