A Modular Test Bed for Reinforcement Learning Incorporation into Industrial Applications

Reuf Kozlica, Georg Schäfer, Stefan Wegenkittl, Simon Hirländer

Publikation: Beitrag in Buch/Bericht/Konferenzband/GesetzeskommentarKonferenzbeitragPeer-reviewed

Abstract

This application paper explores the potential of using reinforcement learning (RL) to address the demands of Industry 4.0, including shorter time-to-market, mass customization, and batch size one production. Specifically, we present a use case in which the task is to transport and assemble goods through a model factory following predefined rules. Each simulation run involves placing a specific number of goods of random color at the entry point. The objective is to transport the goods to the assembly station, where two rivets are installed in each product, connecting the upper part to the lower part. Following the installation of rivets, blue products must be transported to the exit, while green products are to be transported to storage. The study focuses on the application of reinforcement learning techniques to address this problem and improve the efficiency of the production process.
OriginalspracheEnglisch
TitelData Science---Analytics and Applications
Redakteure/-innenPeter Haber, Thomas J. Lampoltshammer, Manfred Mayr
ErscheinungsortCham
Herausgeber (Verlag)Springer Nature Switzerland
Seiten99-101
Seitenumfang3
ISBN (Print)978-3-031-42171-6
DOIs
PublikationsstatusVeröffentlicht - 4 Jan. 2024

Publikationsreihe

NameData Science—Analytics and Applications

Systematik der Wissenschaftszweige 2012

  • 102 Informatik

Dieses zitieren