Black goes green: single-step solvent exchange for sol-gel synthesis of carbon spherogels as high-performance supercapacitor electrodes

Miralem Salihovic, Emmanuel Pamete, Stefanie Arnold, Irena Sulejmani, Eva Theresa Bartschmid, Nicola Hüsing, Gerhard Fritz Popovski, Chaochao Dun, Jeffrey Urban, Volker Presser, Michael Elsässer*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in FachzeitschriftArtikelPeer-reviewed

Abstract

Nanoporous carbon materials with customized structural features enable sustainable and electrochemical applications through improved performance and efficiency. Carbon spherogels (highly porous carbon aerogel materials consisting of an assembly of hollow carbon nanosphere units with uniform diameters) are desirable candidates as they combine exceptional electrical conductivity, bespoke shell porosity, tunability of the shell thickness, and a high surface area. Herein, we introduce a novel and more environmentally friendly sol-gel synthesis of resorcinol-formaldehyde (RF) templated by polystyrene spheres, forming carbon spherogels in an organic solvent. By tailoring the molar ratio of resorcinol to isopropyl alcohol (R/IPA) and the concentration of polystyrene, the appropriate synthesis conditions were identified to produce carbon spherogels with adjustable wall thicknesses. A single-step solvent exchange process from deionized water to isopropyl alcohol reduces surface tension within the porous gel network, making this approach significantly time and cost-effective. The lower surface tension of IPA enables solvent extraction under ambient conditions, allowing for direct carbonization of RF gels while maintaining a specific surface area loss of less than 20% compared to supercritically dried counterparts. The specific surface areas obtained after physical activation with carbon dioxide are 2300-3600 m 2 g −1. Transmission and scanning electron microscopy verify the uniform, hollow carbon sphere network morphology. Specifically, those carbon spherogels are high-performing electrodes for energy storage in a supercapacitor setup featuring a specific capacitance of up to 204 F g −1 at 200 mA g −1 using 1 M potassium hydroxide (KOH) solution as the electrolyte.

OriginalspracheEnglisch
Seiten (von - bis)482-494
Seitenumfang13
FachzeitschriftRSC Energy Advances
Jahrgang2024
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 8 Jan. 2024

Bibliographische Notiz

Publisher Copyright:
© 2024 RSC.

Systematik der Wissenschaftszweige 2012

  • 104 Chemie

Dieses zitieren