Break the Loop: Gender Imbalance in Music Recommenders

Andrés Ferraro, Xavier Serra, Christine Bauer*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/Konferenzband/GesetzeskommentarKonferenzbeitragPeer-reviewed

Abstract

As recommender systems play an important role in everyday life, there is an increasing pressure that such systems are fair. Besides serving diverse groups of users, recommenders need to represent and serve item providers fairly as well. In interviews with music artists, we identified that gender fairness is one of the artists’ main concerns. They emphasized that female artists should be given more exposure in music recommendations. We analyze a widely-used collaborative filtering approach with two public datasets—enriched with gender information—to understand how this approach per-forms with respect to the artists’ gender. To achieve gender balance, we propose a progressive re-ranking method that is based on the insights from the interviews. For the evaluation, we rely on a simulation of feedback loops and provide an in-depth analysis using state-of-the-art performance measures and metrics concerning gender fairness.
OriginalspracheEnglisch
TitelProceedings of the 2021 Conference on Human Information Interaction and Retrieval
ErscheinungsortNew York, NY, USA
Herausgeber (Verlag)Association for Computing Machinery (ACM)
Seiten249-254
ISBN (elektronisch)978-1-4503-8055-3/21/03
DOIs
PublikationsstatusVeröffentlicht - 14 März 2021
Extern publiziertJa
Veranstaltung6th ACM SIGIR Conference on Human Information Interaction and Retrieval - Canberra, Australien
Dauer: 14 März 202119 März 2021
Konferenznummer: 6
https://acm-chiir.github.io/chiir2021/

Konferenz

Konferenz6th ACM SIGIR Conference on Human Information Interaction and Retrieval
KurztitelCHIIR 2021
Land/GebietAustralien
OrtCanberra
Zeitraum14/03/2119/03/21
Internetadresse

Systematik der Wissenschaftszweige 2012

  • 102 Informatik
  • 509 Andere Sozialwissenschaften

Dieses zitieren