Aktivitäten pro Jahr
Abstract
As recommender systems play an important role in everyday life, there is an increasing pressure that such systems are fair. Besides serving diverse groups of users, recommenders need to represent and serve item providers fairly as well. In interviews with music artists, we identified that gender fairness is one of the artists’ main concerns. They emphasized that female artists should be given more exposure in music recommendations. We analyze a widely-used collaborative filtering approach with two public datasets—enriched with gender information—to understand how this approach per-forms with respect to the artists’ gender. To achieve gender balance, we propose a progressive re-ranking method that is based on the insights from the interviews. For the evaluation, we rely on a simulation of feedback loops and provide an in-depth analysis using state-of-the-art performance measures and metrics concerning gender fairness.
Originalsprache | Englisch |
---|---|
Titel | Proceedings of the 2021 Conference on Human Information Interaction and Retrieval |
Erscheinungsort | New York, NY, USA |
Herausgeber (Verlag) | Association for Computing Machinery (ACM) |
Seiten | 249-254 |
ISBN (elektronisch) | 978-1-4503-8055-3/21/03 |
DOIs | |
Publikationsstatus | Veröffentlicht - 14 März 2021 |
Extern publiziert | Ja |
Veranstaltung | 6th ACM SIGIR Conference on Human Information Interaction and Retrieval - Canberra, Australien Dauer: 14 März 2021 → 19 März 2021 Konferenznummer: 6 https://acm-chiir.github.io/chiir2021/ |
Konferenz
Konferenz | 6th ACM SIGIR Conference on Human Information Interaction and Retrieval |
---|---|
Kurztitel | CHIIR 2021 |
Land/Gebiet | Australien |
Ort | Canberra |
Zeitraum | 14/03/21 → 19/03/21 |
Internetadresse |
Systematik der Wissenschaftszweige 2012
- 102 Informatik
- 509 Andere Sozialwissenschaften
-
Fairness in algorithmic decision-making: The effects of bias mitigation strategies in music recommender systems
Bauer, C. (Invited speaker)
20 Nov. 2024Aktivität: Gastvortrag oder Vortrag › Gastvortrag › science to science / art to art
-
Musikempfehlungssysteme aus der Perspektive von Artists: Was ist fair?
Bauer, C. (Redner/in)
2 Juni 2023Aktivität: Gastvortrag oder Vortrag › Vortrag › science to public / art to public
-
KI in der Musikbranche: Last oder Lösung? – Ethische Fragen im Zusammenhang mit Algorithmen
Bauer, C. (Redner/in)
26 Mai 2023Aktivität: Gastvortrag oder Vortrag › Vortrag › science to public / art to public