Projekte pro Jahr
Abstract
Most automated fingerprint recognition systems use minutiae points for comparing fingerprints. In the parlance of Computer Vision, minutiae can be viewed as handcrafted features, i.e., features that have been proposed by human experts for the task of fingerprint recognition. In this work, we raise the following question: Can a machine learning system automatically determine the significance of minutiae points for fingerprint matching? To this effect, a patch-based Siamese Convolutional Neural Network (CNN), which does not explicitly rely on the extraction of minutiae points, is designed and trained from scratch. The purpose of this network is to learn the most effective features for matching fingerprint images. The features learned by this network are analyzed using Gradient-weighted Class Activation Mapping (Grad-CAM) to determine if they correlate with the locations of minutiae points. Our experiments suggest that the proposed network automatically learns to focus on minutiae points, when available, for fingerprint matching. Thus, an automated learner without any explicit domain knowledge establishes the significance of minutiae points for fingerprint matching.
Originalsprache | Englisch |
---|---|
Titel | 2020 IEEE Winter Conference on Applications of Computer Vision (WACV) |
Seiten | 340-348 |
Seitenumfang | 9 |
ISBN (elektronisch) | 9781728165530 |
DOIs | |
Publikationsstatus | Veröffentlicht - 14 Mai 2020 |
Systematik der Wissenschaftszweige 2012
- 102 Informatik
Projekte
- 1 Abgeschlossen
-
IDENTITY: Computer Vision Enabled Multimedia Forensics and People Identification
Uhl, A. (Projektleitung), Debiasi, L. (Projektmitarbeiter/in), Hofbauer, H. (Projektmitarbeiter/in), Kauba, C. (Projektmitarbeiter/in), Schraml, R. (Projektmitarbeiter/in), Uhl, A. (Projektmitarbeiter/in) & Wimmer, G. (Projektmitarbeiter/in)
1/01/16 → 31/12/19
Projekt: Forschung