Can point-cloud based neural networks learn fingerprint variability?

Dominik Söllinger, Robert Jöchl, Simon Kirchgasser, Andreas Uhl

Publikation: Beitrag in Buch/Bericht/Konferenzband/GesetzeskommentarKonferenzbeitragPeer-reviewed

Abstract

Subject- and environmental-specific variations affect the fingerprint recognition process. Quality metrics are capable of detecting and rating severe degradations. However, measuring natural variability, occurring during different fingerprint acquisitions, is not in the scope of these metrics. This work proposes the use of genuine comparison scores as a measure of variability. It is shown that the publicly available PLUS-MSL-FP dataset exhibits large natural variations which can be used to distinguish between different acquisition sessions. Furthermore, it is showcased that point-cloud (set) based neural networks are promising candidates for processing fingerprint imagery as they provide precise control over the input parameters. Experiments show that point-cloud based neural networks are capable of distinguishing between the different sessions in the PLUS-MSL-FP dataset solely based on FP minutiae locations.
OriginalspracheEnglisch
Titel2022 International Conference of the Biometrics Special Interest Group (BIOSIG)
Herausgeber (Verlag)IEEE
Seiten1-8
Seitenumfang8
ISBN (Print)978-1-6654-7667-6
DOIs
PublikationsstatusVeröffentlicht - 16 Sept. 2022
Veranstaltung2022 International Conference of the Biometrics Special Interest Group (BIOSIG) - Darmstadt, Germany
Dauer: 14 Sept. 202216 Sept. 2022

Konferenz

Konferenz2022 International Conference of the Biometrics Special Interest Group (BIOSIG)
Zeitraum14/09/2216/09/22

Bibliographische Notiz

Publisher Copyright:
© 2022 IEEE.

Schlagwörter

  • Measurement
  • Degradation
  • Image matching
  • Neural networks
  • Process control
  • Fingerprint recognition
  • Aging

Systematik der Wissenschaftszweige 2012

  • 102 Informatik

Dieses zitieren