Abstract
Finger region segmentation is an important step in a biometric finger vein recognition toolchain. Its aim is to separate the finger region from background and all other objects of the image. So far, finger region extraction for finger vein recognition systems has mainly used classical image processing based systems. In this work three state-of-the art convolutional neural network (CNN) based architectures for segmentation, namely Mask R-CNN, CCNet and HRNet, are evaluated. A major advantage of the presented CNN-based approach compared to classic image processing approaches is that the images neither have to be preprocessed nor any parameters have to be optimized. All that is required is a sufficient number of already segmented finger vein images for training.
Originalsprache | Englisch |
---|---|
Titel | 2022 International Workshop on Biometrics and Forensics (IWBF) |
Herausgeber (Verlag) | IEEE |
Seiten | 1-6 |
Seitenumfang | 6 |
ISBN (elektronisch) | 9781665469623 |
ISBN (Print) | 978-1-6654-6963-0 |
DOIs | |
Publikationsstatus | Veröffentlicht - 21 Apr. 2022 |
Veranstaltung | 2022 International Workshop on Biometrics and Forensics (IWBF) - Salzburg, Austria Dauer: 20 Apr. 2022 → 21 Apr. 2022 |
Publikationsreihe
Name | 2022 International Workshop on Biometrics and Forensics, IWBF 2022 |
---|
Konferenz
Konferenz | 2022 International Workshop on Biometrics and Forensics (IWBF) |
---|---|
Zeitraum | 20/04/22 → 21/04/22 |
Bibliographische Notiz
Funding Information:This project has received funding from the FWF project Advanced Methods and Applications for Fingervein Recognition under grant No. P 32201-NBL.
Publisher Copyright:
© 2022 IEEE.
Schlagwörter
- Training
- Image segmentation
- Image recognition
- Art
- Biometrics (access control)
- Veins
- Forensics
Systematik der Wissenschaftszweige 2012
- 102 Informatik