CNN based Finger Region Segmentation for Finger Vein Recognition

Bernhard Prommegger, Dominik Söllinger, Georg Wimmer, Andreas Uhl

Publikation: Beitrag in Buch/Bericht/Konferenzband/GesetzeskommentarKonferenzbeitragPeer-reviewed

Abstract

Finger region segmentation is an important step in a biometric finger vein recognition toolchain. Its aim is to separate the finger region from background and all other objects of the image. So far, finger region extraction for finger vein recognition systems has mainly used classical image processing based systems. In this work three state-of-the art convolutional neural network (CNN) based architectures for segmentation, namely Mask R-CNN, CCNet and HRNet, are evaluated. A major advantage of the presented CNN-based approach compared to classic image processing approaches is that the images neither have to be preprocessed nor any parameters have to be optimized. All that is required is a sufficient number of already segmented finger vein images for training.
OriginalspracheEnglisch
Titel2022 International Workshop on Biometrics and Forensics (IWBF)
Herausgeber (Verlag)IEEE
Seiten1-6
Seitenumfang6
ISBN (elektronisch)9781665469623
ISBN (Print)978-1-6654-6963-0
DOIs
PublikationsstatusVeröffentlicht - 21 Apr. 2022
Veranstaltung2022 International Workshop on Biometrics and Forensics (IWBF) - Salzburg, Austria
Dauer: 20 Apr. 202221 Apr. 2022

Publikationsreihe

Name2022 International Workshop on Biometrics and Forensics, IWBF 2022

Konferenz

Konferenz2022 International Workshop on Biometrics and Forensics (IWBF)
Zeitraum20/04/2221/04/22

Bibliographische Notiz

Funding Information:
This project has received funding from the FWF project Advanced Methods and Applications for Fingervein Recognition under grant No. P 32201-NBL.

Publisher Copyright:
© 2022 IEEE.

Schlagwörter

  • Training
  • Image segmentation
  • Image recognition
  • Art
  • Biometrics (access control)
  • Veins
  • Forensics

Systematik der Wissenschaftszweige 2012

  • 102 Informatik

Dieses zitieren