Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

Felix Petersen, Christian Borgelt, Hilde Kühne, Oliver Deussen

Publikation: Beitrag in Buch/Bericht/Konferenzband/GesetzeskommentarKonferenzbeitragPeer-reviewed

Abstract

Sorting and ranking supervision is a method for training neural networks end-to-end based on ordering constraints. That is, the ground truth order of sets of samples is known, while their absolute values remain unsupervised. For that, we propose differentiable sorting networks by relaxing their pairwise conditional swap operations. To address the problems of vanishing gradients and extensive blurring that arise with larger numbers of layers, we propose mapping activations to regions with moderate gradients. We consider odd-even as well as bitonic sorting networks, which outperform existing relaxations of the sorting operation. We show that bitonic sorting networks can achieve
stable training on large input sets of up to 1024 elements.
OriginalspracheEnglisch
TitelProceedings of the 38th International Conference on Machine Learning
UntertitelProceedings of Machine Learning Research 139
Seiten8546-8555
Seitenumfang10
Band139
PublikationsstatusVeröffentlicht - 18 Juli 2021
VeranstaltungInternational Conference on Machine Learning 2021 - Online
Dauer: 18 Juli 202124 Juli 2021
https://icml.cc/Conferences/2021

Publikationsreihe

NameProceedings of Machine Learning Research
Herausgeber (Verlag)Proceedings of Machine Learning Research
ISSN (elektronisch)1938-7228

Konferenz

KonferenzInternational Conference on Machine Learning 2021
KurztitelICML 2021
Zeitraum18/07/2124/07/21
Internetadresse

Schlagwörter

  • neural networks
  • sorting networks

Systematik der Wissenschaftszweige 2012

  • 102 Informatik

Dieses zitieren