Abstract
Sorting and ranking supervision is a method for training neural networks end-to-end based on ordering constraints. That is, the ground truth order of sets of samples is known, while their absolute values remain unsupervised. For that, we propose differentiable sorting networks by relaxing their pairwise conditional swap operations. To address the problems of vanishing gradients and extensive blurring that arise with larger numbers of layers, we propose mapping activations to regions with moderate gradients. We consider odd-even as well as bitonic sorting networks, which outperform existing relaxations of the sorting operation. We show that bitonic sorting networks can achieve
stable training on large input sets of up to 1024 elements.
stable training on large input sets of up to 1024 elements.
Originalsprache | Englisch |
---|---|
Titel | Proceedings of the 38th International Conference on Machine Learning |
Untertitel | Proceedings of Machine Learning Research 139 |
Seiten | 8546-8555 |
Seitenumfang | 10 |
Band | 139 |
Publikationsstatus | Veröffentlicht - 18 Juli 2021 |
Veranstaltung | International Conference on Machine Learning 2021 - Online Dauer: 18 Juli 2021 → 24 Juli 2021 https://icml.cc/Conferences/2021 |
Publikationsreihe
Name | Proceedings of Machine Learning Research |
---|---|
Herausgeber (Verlag) | Proceedings of Machine Learning Research |
ISSN (elektronisch) | 1938-7228 |
Konferenz
Konferenz | International Conference on Machine Learning 2021 |
---|---|
Kurztitel | ICML 2021 |
Zeitraum | 18/07/21 → 24/07/21 |
Internetadresse |
Schlagwörter
- neural networks
- sorting networks
Systematik der Wissenschaftszweige 2012
- 102 Informatik