Evaluating Recommender Systems: Survey and Framework

Eva Zangerle*, Christine Bauer

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in FachzeitschriftArtikelPeer-reviewed

Abstract

The comprehensive evaluation of the performance of a recommender system is a complex endeavor: many facets need to be considered in configuring an adequate and effective evaluation setting. Such facets include, for instance, defining the specific goals of the evaluation, choosing an evaluation method, underlying data, and suitable evaluation metrics. In this article, we consolidate and systematically organize this dispersed knowledge on recommender systems evaluation. We introduce the Framework for Evaluating Recommender systems (FEVR), which we derive from the discourse on recommender systems evaluation. In FEVR, we categorize the evaluation space of recommender systems evaluation. We postulate that the comprehensive evaluation of a recommender system frequently requires considering multiple facets and perspectives in the evaluation. The FEVR framework provides a structured foundation to adopt adequate evaluation configurations that encompass this required multi-facetedness and provides the basis to advance in the field. We outline and discuss the challenges of a comprehensive evaluation of recommender systems and provide an outlook on what we need to embrace and do to move forward as a research community.
OriginalspracheEnglisch
Aufsatznummer170
Seiten (von - bis)1-38
Seitenumfang38
FachzeitschriftACM Computing Surveys
Jahrgang55
Ausgabenummer8
Frühes Online-Datum23 Dez. 2022
DOIs
PublikationsstatusVeröffentlicht - 23 Dez. 2022
Extern publiziertJa

Bibliographische Notiz

Publisher Copyright:
© 2022 Copyright held by the owner/author(s).

Systematik der Wissenschaftszweige 2012

  • 102 Informatik

Dieses zitieren