Abstract
Ancient times witnessed the origins of the theory of continued fractions. Throughout time, mathematical geniuses such as Euclid, Aryabhata, Fibonacci, Bombelli, Wallis, Huygens, or Euler have made significant contributions to the development of this famous theory, and it continues to evolve today, especially as a means of linking different areas of mathematics. This book, whose primary audience is graduate students and senior researchers, is motivated by the fascinating interrelations between ergodic theory and number theory (as established since the 1950s). It examines several generalizations and extensions of classical continued fractions, including generalized Lehner, simple, and Hirzebruch-Jung continued fractions. After deriving invariant ergodic measures for each of the underlying transformations on [0,1] it is shown that any of the famous formulas, going back to Khintchine and Levy, carry over to more general settings. Complementing these results, the entropy of the transformations is calculated and the natural extensions of the dynamical systems to [0,1]2 are analyzed.
Originalsprache | Englisch |
---|---|
Erscheinungsort | New York |
Verlag | Chapman And Hall |
Seitenumfang | 141 |
ISBN (elektronisch) | 9781000907582 |
ISBN (Print) | 9781032518183 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2023 |
Bibliographische Notiz
Publisher Copyright:© 2024 Juan Fernández Sánchez, Jerónimo López-Salazar Codes, Juan B. Seoane Sepúlveda, Wolfgang Trutschnig.
Systematik der Wissenschaftszweige 2012
- 101 Mathematik