Gradient Ascent for Best Response Regression

Victoria Racher, Christian Borgelt

Publikation: Beitrag in Buch/Bericht/Konferenzband/GesetzeskommentarKonferenzbeitragPeer-reviewed

Abstract

Although regression is among the oldest areas of statistics, new approaches may still be found. One recent suggestion is Best Response Regression, where one tries to find a regression function that provides, for as many instances as possible, a better prediction than some reference regression function. In this paper we propose a new method for Best Response Regression that is based on gradient ascent rather than mixed integer programming. We evaluate our approach for a variety of noise (or error) distributions, showing that especially for heavy-tailed distributions best response regression outperforms, on unseen data, ordinary least squares regression, both w.r.t. the sum of squared errors as well as the number of instances for which better predictions are provided.
OriginalspracheEnglisch
TitelAdvances in Intelligent Data Analysis XIX
UntertitelInternational Symposium on Intelligent Data Analysis
Redakteure/-innenPedro Henriques Abreu, Pedro Pereira Rodrigues, Alberto Fernández, João Gama
ErscheinungsortHeidelberg / Berlin
Herausgeber (Verlag)Springer Verlag
Kapitel12
Seiten141-154
Seitenumfang14
BandLNCS 12695
ISBN (elektronisch)978-3-030-74251-5
ISBN (Print)978-3-030-74250-8
DOIs
PublikationsstatusVeröffentlicht - 13 Apr. 2021
VeranstaltungInternational Symposium on Intelligent Data Analysis 2021 - Online, Porto, Portugal
Dauer: 26 Apr. 202126 Apr. 2021
https://ida2021.org/

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band12695 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Online-Konferenz

Online-KonferenzInternational Symposium on Intelligent Data Analysis 2021
KurztitelIDA 2021
Land/GebietPortugal
OrtPorto
Zeitraum26/04/2126/04/21
Internetadresse

Bibliographische Notiz

Funding Information:
Acknowledgments. The second author gratefully acknowledges the financial support from Land Salzburg within the WISS 2025 project IDA-Lab (20102-F1901166-KZP and 20204-WISS/225/197-2019).

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.

Systematik der Wissenschaftszweige 2012

  • 102 Informatik

Dieses zitieren