Identity and Extensionality in Boffa Set Theory

Publikation: Beitrag in FachzeitschriftArtikelPeer-reviewed

Abstract

Boffa non-well-founded set theory allows for several distinct sets equal to their respective singletons, the so-called ‘Quine atoms’. Rieger contends that this theory cannot be a faithful description of set-theoretic reality. He argues that, even after granting that there are non-well-founded sets, ‘the extensional nature of sets’ precludes numerically distinct Quine atoms. In this paper we uncover important similarities between Rieger’s argument and how non-rigid structures are conceived within mathematical structuralism. This opens the way for an objection against Rieger, whilst affording the theoretical resources for a defence of Boffa set theory as a faithful description of set-theoretic reality.

OriginalspracheEnglisch
Seiten (von - bis)115-123
FachzeitschriftPhilosophia Mathematica
Jahrgang32
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 2024

Bibliographische Notiz

Publisher Copyright:
© 2024 Oxford University Press. All rights reserved.

Systematik der Wissenschaftszweige 2012

  • 603 Philosophie, Ethik, Religion

Dieses zitieren