Maximal asymmetry of bivariate copulas and consequences to measures of dependence

Florian Griessenberger, Wolfgang Trutschnig

Publikation: Beitrag in FachzeitschriftArtikelPeer-reviewed

Abstract

In this article, we focus on copulas underlying maximal non-exchangeable pairs (X, Y) (X,Y) of continuous random variables X, Y X,Y either in the sense of the uniform metric d ∞ or the conditioning-based metrics D p {D}_{p}, and analyze their possible extent of dependence quantified by the recently introduced dependence measures ζ 1 and ζ \xi. Considering maximal d ∞-Asymmetry we obtain ζ 1 5 6, 1] and ζ 2 3,1], and in the case of maximal D 1 {D}_{1}-Asymmetry we obtain ζ 1 3 4, 1 and ζ 1 2, 1, implying that maximal asymmetry implies a very high degree of dependence in both cases. Furthermore, we study various topological properties of the family of copulas with maximal D 1 {D}_{1}-Asymmetry and derive some surprising properties for maximal Dp-Asymmetric copulas.

OriginalspracheEnglisch
Seiten (von - bis)245-269
Seitenumfang25
FachzeitschriftDependence Modeling
Jahrgang10
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 1 Jan. 2022

Bibliographische Notiz

Funding Information:
Florian Griessenberger gratefully acknowledges the support of the Austrian FWF START project Y1102 “Successional Generation of Functional Multidiversity.” Moreover, Florian Griessenberger and Wolfgang Trutschnig gratefully acknowledge the support of the WISS 2025 project “IDA-lab Salzburg” (20204-WISS/225/197-2019 and 20102-F1901166-KZP).

Publisher Copyright:
© 2022 Florian Griessenberger and Wolfgang Trutschnig, published by De Gruyter.

Systematik der Wissenschaftszweige 2012

  • 101 Mathematik

Dieses zitieren