On a multivariate copula-based dependence measure and its estimation

Florian Griessenberger, R.R. Junker, Wolfgang Trutschnig

Publikation: Beitrag in FachzeitschriftArtikelPeer-reviewed

Abstract

Working with so-called linkages allows to define a copula-based, [0, 1]-valued multivariate dependence measure ζ 1 (X, Y) quantifying the scale-invariant extent of dependence of a random variable Y on a d-dimen-sional random vector X = (X 1, …, X d) which exhibits various good and natural properties. In particular, ζ 1 (X, Y) = 0 if and only if X and Y are independent, ζ 1 (X, Y) is maximal exclusively if Y is a function of X, and ignoring one or several coordinates of X can not increase the resulting dependence value. After introducing and analyzing the metric D 1 underlying the construction of the dependence measure and deriving examples showing how much information can be lost by only considering all pairwise dependence values ζ 1 (X 1, Y), …, ζ 1 (X d, Y) we derive a so-called checker-board estimator for ζ 1 (X, Y) and show that it is strongly consistent in full generality, i.e., without any smoothness restrictions on the underlying copula. Some simulations illustrating the small sample performance of the estimator complement the established theoretical results.

OriginalspracheEnglisch
Seiten (von - bis)2206-2251
Seitenumfang46
FachzeitschriftElectronic Journal of Statistics
Jahrgang16
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 2022

Bibliographische Notiz

Funding Information:
∗The first and the second author gratefully acknowledge the support of the Austrian FWF START project Y1102 ‘Successional Generation of Functional Multidiversity’. Moreover, the third author gratefully acknowledges the support of the WISS 2025 project ‘IDA-lab Salzburg’ (20204-WISS/225/197-2019 and 0102-F1901166-KZP). †Corresponding author

Publisher Copyright:
© 2022, Institute of Mathematical Statistics. All rights reserved.

Systematik der Wissenschaftszweige 2012

  • 101 Mathematik

Dieses zitieren