Tracks vs. Counters: Towards a Systematic Analysis of Spatiotemporal Factors Influencing Correlation

Anita Graser, Petra Stutz, Martin Loidl

Publikation: Beitrag in Buch/Bericht/Konferenzband/GesetzeskommentarKonferenzbeitragPeer-reviewed

Abstract

Mobility data from tracking apps and stationary counters are often limited by biased sampling, uneven spatial distribution and low spatial coverage, respectively. Data fusion approaches attempt to combine the advantages of both sources. However, the observed correlation of tracks and counts is often mediocre. The reasons for these differences are often ascribed to sampling bias. However, we argue that this is an oversimplification of the real relationship. We present our work in progress concept for relating tracking data and stationary counting data to critically reflect on the factors influencing their correlation and how this can inform data fusion approaches.
OriginalspracheEnglisch
TitelGIScience
UntertitelAdvancing Movement Data Science (AMD’21)
Redakteure/-innenSomayeh Dodge
PublikationsstatusVeröffentlicht - 2021
VeranstaltungGIScience: International Conference on Geographic Information Science - Poznan, Polen
Dauer: 27 Sept. 202130 Sept. 2021
https://www.giscience.org/

Konferenz

KonferenzGIScience
Land/GebietPolen
OrtPoznan
Zeitraum27/09/2130/09/21
Internetadresse

Systematik der Wissenschaftszweige 2012

  • 102 Informatik
  • 211 Andere Technische Wissenschaften

Dieses zitieren