A model-guided dissociation between subcortical and cortical contributions to word recognition

Research output: Contribution to journalArticlepeer-review

Abstract

Neurocognitive studies of visual word recognition have provided information about brain activity correlated with orthographic processing. Some of these studies related the orthographic neighborhood density of letter strings to the amount of hypothetical global lexical activity (GLA) in the brain as simulated by computational models of word recognition. To further investigate this issue, we used GLA of words and nonwords from the multiple read-out model of visual word recognition (MROM) and related this activity to neural correlates of orthographic processing in the brain by using functional magnetic resonance imaging (fMRI). Words and nonwords elicited linear effects in the cortex with increasing BOLD responses for decreasing values of GLA. In addition, words showed increasing linear BOLD responses for increasing GLA values in subcortical regions comprising the hippocampus, globus pallidus and caudate nucleus. We propose that these regions are involved in the matching of orthographic input onto representations in long-term memory. The results speak to a potential involvement of the basal ganglia in visual word recognition with globus pallidus and caudate nucleus activity potentially reflecting maintenance of orthographic input in working memory supporting the matching of the input onto stored representations by selection of appropriate lexical candidates and the inhibition of orthographically similar but non-matching candidates.

Original languageEnglish
Article number4506
JournalScientific Reports
Volume9
Issue number1
DOIs
Publication statusPublished - 14 Mar 2019

Fields of Science and Technology Classification 2012

  • 107 Other Natural Sciences
  • 501 Psychology

Cite this