Projects per year
Abstract
The power of electrophysiologically measured cortical activity decays 1/fX. The slope of this decay (i.e. the spectral exponent) is modulated by various factors such as age, cognitive states or psychiatric/neurological disorders. Interestingly, a mostly parallel line of research has also uncovered similar effects for the spectral slope in the electrocardiogram (ECG). This raises the question whether these bodywide changes in spectral slopes are (in-)dependent. Focusing on well-established age-related changes in spectral slopes we analyzed a total of 1282 recordings of magnetoencephalography (MEG) resting state measurements with concurrent ECG in an age-diverse sample. We show that the aperiodic signal recorded using surface electrodes/sensors originates from multiple physiological sources. In particular, significant parts of age-related changes in aperiodic activity normally interpreted to be of neural origin can be explained by cardiac activity. Moreover, our results suggest that changes (flattening/steepening) of the spectral slope with age are dependent on the recording site and investigated frequency range. Our results highlight the complexity of aperiodic activity while raising concerns when interpreting aperiodic activity as “cortical“ without considering physiological influences.
Original language | English |
---|---|
Publisher | bioRxiv |
Number of pages | 51 |
DOIs | |
Publication status | Published - 25 Jul 2024 |
Fields of Science and Technology Classification 2012
- 501 Psychology
Projects
- 1 Finished
-
Doktoratskolleg Imaging the Mind: Connectivity and Higher Cognitive Function
Schabus, M. (Principal Investigator), Wilhelm, F. (Co-Investigator), Blechert, J. (Co-Investigator), Hödlmoser, K. (Co-Investigator), Hutzler, F. (Co-Investigator), Jonas, E. (Co-Investigator), Perner, J. (Co-Investigator), Weisz, N. (Co-Investigator), Pletzer, B. A. (Co-Investigator) & Kronbichler, M. (Co-Investigator)
1/03/19 → 31/08/24
Project: Research
Research output
- 1 Article
-
Age-related changes in “cortical” 1/f dynamics are linked to cardiac activity
Schmidt, F., Danböck, S. K., Trinka, E., Klein, D. P., Demarchi, G. & Weisz, N., 10 Sept 2024, (E-pub ahead of print) In: eLife.Research output: Contribution to journal › Article › peer-review
Open Access